Team 19 CNT Reinforced Ceramics 3D Printer Final Presentation

Advisors

Dr. Cheryl Xu, FSU Dr. Wei Guo, FSU Dr. Yong Huang, UF

Team Members

Ernest Etienne, M.E.

Cody Evans, I.E.

Basak Simal, M.E.

Daphne Solis, I.E.

Sonya Peterson, M.E.

Sam Yang, M.E.

Course Professors

Dr. James Dobbs Dr. Nikhil Gupta Dr. Okenwa Okoli Dr. Chiang Shih

Contents

- 1. Project Motivation and Definition
- 2. Background Information
- 3. Methods and Design Process
- 4. Experiments and Testing
- 5. Final Results
- 6. Project Management
- 7. Achievements
- 8. Future Recommendations

Sonya Peterson CNT Reinforced Ceramics 3D Printer

Team 19 2 of 29

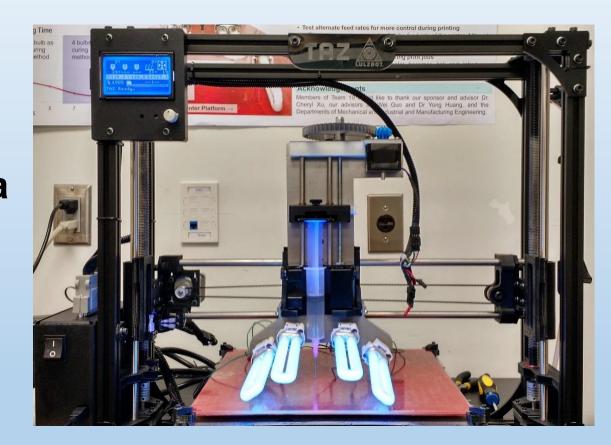
Motivation

Sponsor funding contingent on results

- Start up funds for project
- Used to gather funds in future

Materials science advancements

- New material for advanced applications
- Applications follow new materials
- 3D printer advancements
 - Outdating previous industry manufacturing methods



Sonya Peterson CNT Reinforced Ceramics 3D Printer

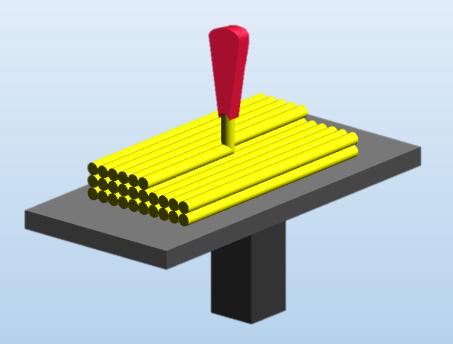
Team 19 3 of 29

Objective

Develop a new manufacturing process for a liquid ceramicpolymer material reinforced with carbon nanotubes by retrofitting a 3D printer with both an extrusion system capable of depositing the material, and a curing system which will solidify the material for further pyrolysis.

Sonya Peterson CNT Reinforced Ceramics 3D Printer

Team 19 4 of 29

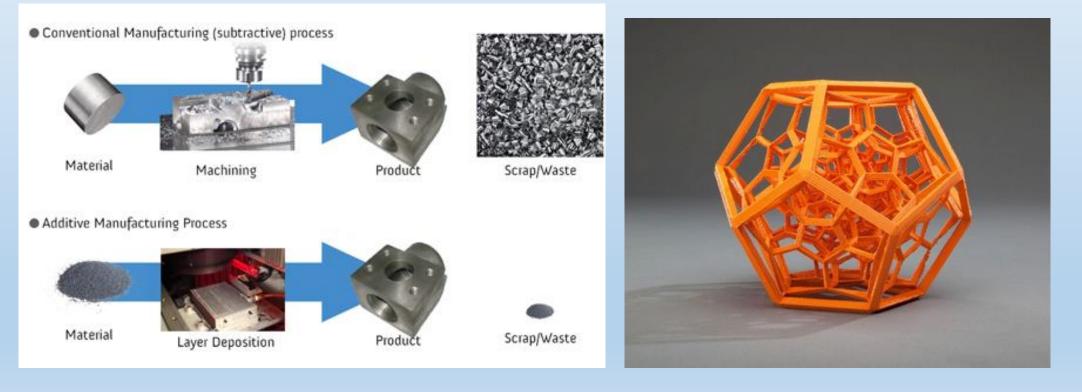

Scope

- Modify existing 3D printer to meet customer specifications
- Fabricate custom hardware
- Install support systems
- Develop optimal material composition
- Not required to build or assemble base 3D printer
- Not required to develop new software
- Not responsible for post-processing of material
- Not responsible for performing material property tests

Team 19 5 of 29 Sonya Peterson CNT Reinforced Ceramics 3D Printer

Design Requirements

- Minimize curing time
- Maximally use commercial components
- Object must consist of multiple layers
- Printer should be durable
- The material requires an extrusion type process as opposed to other 3D printing methods such as sintering or resin printing

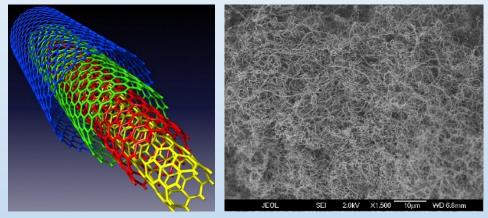


Basak Simal CNT Reinforced Ceramics 3D Printer

Team 19 6 of 29

Background 3D Printing

Additive vs traditional manufacturing

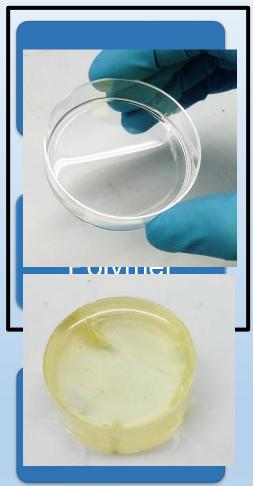


Basak Simal CNT Reinforced Ceramics 3D Printer

Team 19 7 of 29

Background Carbon Nanotubes

- Carbon nanotubes (CNTs) are one atom thick layer of carbon atoms rolled into a cylinder
- Increases strength, elasticity, and electrical and thermal conductivity
- Applications in aero and astrospace, defense, and automotive industries
- Project use: improve properties and add viscosity



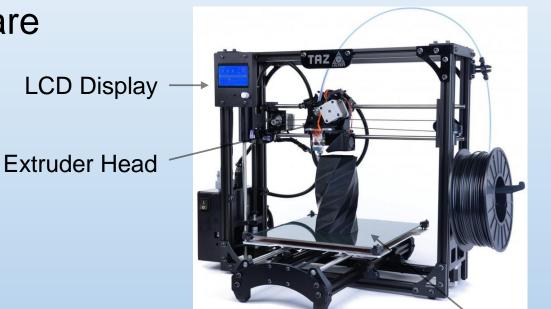
Basak Simal CNT Reinforced Ceramics 3D Printer

Team 19 8 of 29

Background Polymer Ceramics

- Polymer with inorganic fibers within the matrix
- Curing Liquid \rightarrow Solid at ~200° C
- Pyrolysis Polymer \rightarrow Ceramic at 1000° C
- Increased electrical and thermal conductivity, corrosive, abrasive, oxidative, and crack and creep resistant
- Applications: strengthening and reinforcing ceramic matrices and high temperature coating

Project

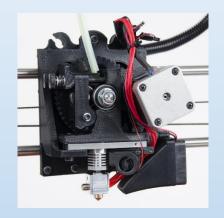

Scope

Basak Simal CNT Reinforced Ceramics 3D Printer

Team 19 9 of 29

TAZ 4

- Established firmware & hardware
- Extruder head clearance
- Open-source software
- Sponsor preference


Heated Print Bed

Ernest Etienne CNT Reinforced Ceramics 3D Printer

Team 19 10 of 29

Design Process Extrusion System

- Retrofit TAZ 4's standard extruder head
- Concept Generation
 - Ink Shield
 - Nozzle
 - Syringe Pump
- Syringe pump superior extrusion method

Ernest Etienne CNT Reinforced Ceramics 3D Printer

Team 19 11 of 29

Design Process Curing System

- Expand TAZ 4's capabilities
- Concept Generation
 - Heat
 - Laser
 - UV Cure
- UV Cure chosen for curing system

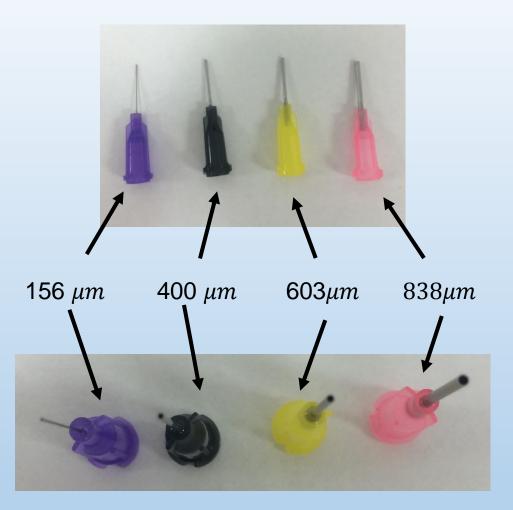
Ernest Etienne CNT Reinforced Ceramics 3D Printer

Team 19 12 of 29

- Testing apparatus
- Constant
 - Needle distance from plate (3mm)
- Variables
 - Needle gauge
 - Print stage travel speed
 - Flow Rate (mL/min)

Sam Yang CNT Reinforced Ceramics 3D Printer

Team 19 13 of 29


- Extrusion of polymer mixed with carbon nanotubes
 - CNTs increase viscosity
 - Determining a desirable mass fraction of CNTs
 - Flow control

Sam Yang CNT Reinforced Ceramics 3D Printer

Team 19 14 of 29

- Initial gauge caused high pressure build up
- Increase resolution
 - Varying the needle gauge
 - 400 μm needle had best resolution ~0.8 mm line width

Sam Yang CNT Reinforced Ceramics 3D Printer

Team 19 15 of 29

Experimental Formula

- Theoretical Calculation for viscosity
 - Poiseuille's Law
 - Linear force of pump 15-35lbs.

•
$$\Delta P = \frac{8\mu LQ}{\pi r^4}$$
; $\mu = \frac{\Delta P \pi r^4}{8LQ}$

 Viscosity determined 45,000 – 295,000 cP

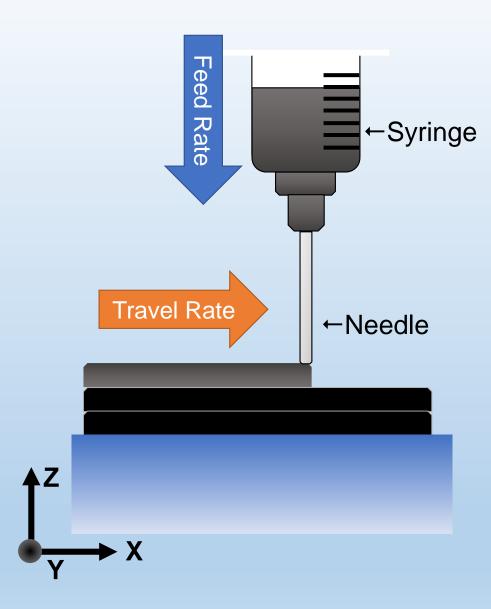
Material	Viscosity (cP)
Water	1
Milk	3
SAE 10 Motor Oil	85-140
Pure Polymer	50-200
Honey	10,000
Ketchup	50,000
Sour Cream	100,000
Peanut Butter	250,000
Slurry with 2% CNT	45,000 - 295,000

Sam Yang CNT Reinforced Ceramics 3D Printer

Team 19 16 of 29

Conclusion

- 2% mass fraction of carbon nanotube added to polymer
- 400 μm produced best resolution
- Flow rate set constant 0.5 $\frac{mL}{min}$
 - Enhanced flow control

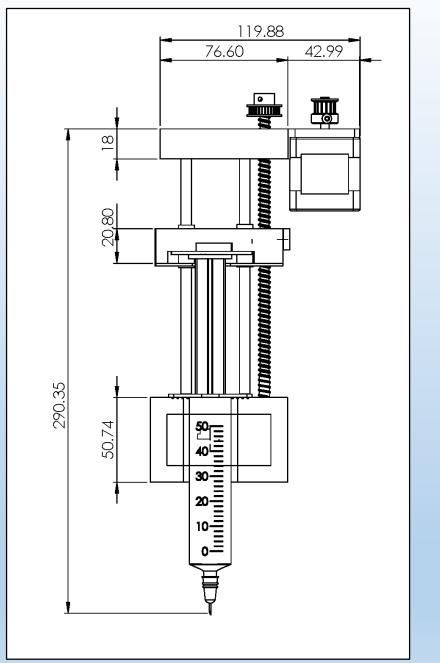

Sam Yang CNT Reinforced Ceramics 3D Printer

Team 19 17 of 29

Functional Results

Speed and print time

- Liquid material printing possible at speeds of conventional printing
- Finer results can be had with speeds at 33-80% of maximum
- Lower speeds reduces inertia of print material, reducing error due to overshoot, allows for more consistent extrusion

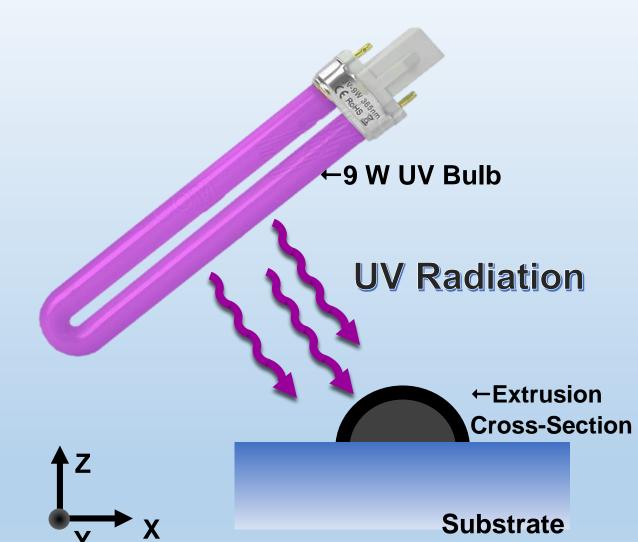


Cody Evans CNT Reinforced Ceramics 3D Printer

Team 19 18 of 29

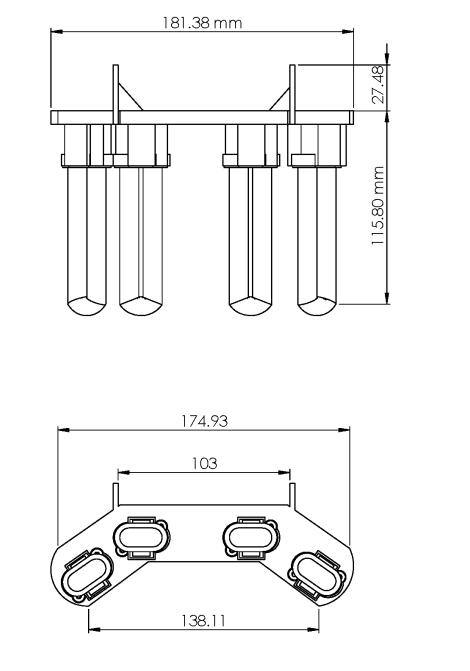
Functional Results Syringe Pump

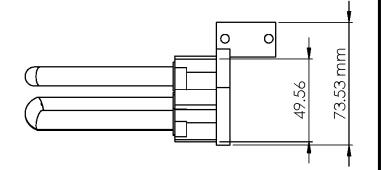
- Multiple syringe and needle combinations
 - Tested range: 400 to 838µm (micron) needles
 - Min. line width: 0.6mm
 - Min layer height: 0.5mm
- Allows user to premix material
- Variable flow rate control via stepper motor



Cody Evans CNT Reinforced Ceramics 3D Printer

Team 19 19 of 29

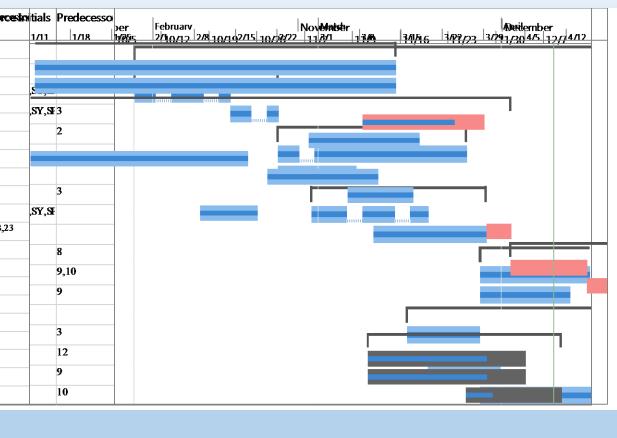

Functional Results Ultraviolet Lamps


- Curing induced via UV radiation in the presence of UV sensitizer
- Layer solidification begins after 2-3 minutes
- Layer fully cures in 10 minutes

Cody Evans CNT Reinforced Ceramics 3D Printer

Team 19 20 of 29

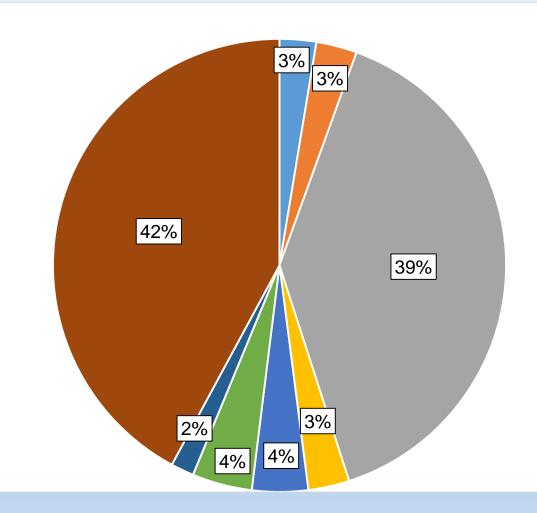
Safety Environment and Health


- 3D printing hazards
- Ultraviolet radiation hazards
- UV curing reagent hazards
- CNT disposal and exposure risks
- Precursor disposal and exposure risks

Daphne Solis CNT Reinforced Ceramics 3D Printer

Gantt Chart

		ID	Task Name	
D	Tæs	19	1.6 Testing	odece
19	1	20	1.6.1 Droplet Size and Flow Rate	-
29		21	1.6.2 Curing Time	
21		22	1.7 Fabrication & Assembly	
-22 -4 -23		23	1.7.1 Curing Array	-
24		24	1.7.2 Syringe Pump Mechanism	
29 26		25	1.7.3 Inkshield Device	
26 28		26	1.7.4 Machined Components	-
29		27	1.7.5 3d Print Components	
4 0		28	1.7.6 PC and software setup	,28,23
驺		29	1.7.7 Mount custom hardware	-
12 37 13 33	-	30	1.8 Refinement	
33 14 34		31	1.8.1 Testing w/ Nanopowder	
34 35 35		32	1.8.2 Test analysis	-
36		33	1.8.3 Improvement plan	
17		34	1.8.4 Rework	
318		35	1.9 Project Closure	
		36	1.9.1 Create operation manual for users	
		37	1.9.2 DFMA Report, Economic Analysis	
		38	1.9.3 Write Final Report	

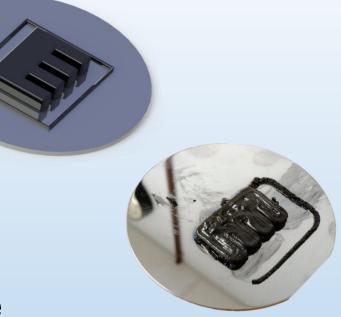


Team 19

23 of 29

Daphne Solis CNT Reinforced Ceramics 3D Printer

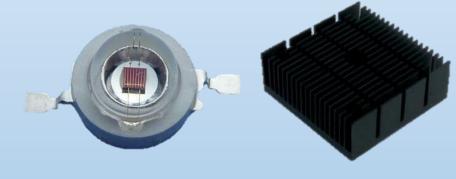
Budget Allocation


- Extrusion Alternative = \$131
- Curing System = \$147
- 3D Printer = \$1,995
- Syringe Pump = \$148
- Taz 4 Extras = \$201
- Misc. = \$216
- Electrical Components = \$83
- Remaining = \$2,127

Daphne Solis CNT Reinforced Ceramics 3D Printer

Team 19 24 of 29

Achievements


- Successfully extrude the material mixture
- Implemented a material curing system
- Modified printer profile and G-code
- Made custom print head quickly interchangeable
- Used project management tools to control budget and schedule
- Realized the product formation process
- Printed solid parts conforming to sponsor specifications

Team 19 25 of 29 Daphne Solis CNT Reinforced Ceramics 3D Printer

Recommendations for Future Work

- CNT alignment
- Material mixture refinement
- Curing array improvements
- Gear set and stepper motor modification
- Establish material property tests

LED Emitter

Heat sink

Daphne Solis CNT Reinforced Ceramics 3D Printer

References

http://www.dainikdisha.com/wp-content/uploads/2014/08/3d-print-timeline.jpg

http://www.esa.int/Highlights/Lunar_3D_printing

http://upload.wikimedia.org/wikipedia/commons/4/42/FDM_by_Zureks.png

http://www.stratasys.com/3d-printers/technologies/fdm-technology

http://www.nano-lab.com/nanotube-image2.html

http://www.nanocomptech.com/what-are-carbon-nanotubes

http://www.vp-scientific.com/Viscosity_Tables.htm

http://www.kiondefense.com/bulletins/TB1.pdf

Team 19 27 of 29

CNT Reinforced Ceramics 3D Printer

Questions?

http://eng.fsu.edu/me/senior_design/2015/team19/